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Abstract. In this paper, we present a novel robust method for point
matching under noise, deformation, occlusion and outliers. We introduce
a new probability model to represent point sets, namely asymmetric
Gaussian (AG), which can capture spatially asymmetric distributions.
Firstly, we use a mixture of AGs to represent the point set. Secondly, we
use L2-minimizing estimate (L2E), a robust estimator to estimate den-
sities between two point sets, to estimate the transformation function
in reproducing kernel Hilbert space (RKHS) with regularization theo-
ry. Thirdly, we use low-rank kernel matrix approximation to reduce the
computational complexity. Experimental results show that our method
outperforms the comparative state-of-the-art methods on most scenarios,
and it is quite robust to noise, deformation, occlusion and outliers.

1 Introduction

The point matching problem can be categorized into rigid and nonrigid matching
depends on the transformation pattern. Generally, rigid transformation, contain-
ing translation, rotation and scaling, is relatively easy to estimate. By contrast,
nonrigid transformation is hard to resolve since the transformation model is
often unknown and difficult to model. Nonrigid transformation exists in numer-
ous applications, including hand-written character recognition, facial-expression
recognition and medical image registration.

However, there are many parameters in nonrigid transformation, causing sev-
eral problems: 1) sensitive to noise, deformation, occlusion and outliers; 2) the
trap of local minima; 3) high computational complexity. The nonrigid matching
problem, in this sense, remains unsolved. Therefore, a point matching method
should construct the complex transformation model with low computational
complexity.

The Iterative Closest Point (ICP) algorithm [3] is one of the best known
algorithms for point matching, because of its simplicity and low computational
complexity. However, ICP requires a good initial position, i.e., adequately close
distance between the Model and the Scene point sets.

In order to address the limitations of ICP and improve the performance
of matching, many interesting methods are proposed recently. Chui et al. [4]
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proposed a robust point matching algorithm named TPS-RPM. TPS-RPM is
more robust than ICP to noise, deformation, occlusion and outliers.

Tsin et al. [20] proposed a correlation-based named kernel correlation (KC)
point set registration method where the correlation of two kernel density esti-
mates is used to formulate the cost function. Zheng et al. [21] proposed a robust
point matching method for nonrigid shapes by preserving local neighborhood
structures. Myronenko et al. [13, 14] proposed another algorithm, namely the
Coherence Point Drift (CPD), based on the motion coherence theory (MCT).
CPD can get good results in a very short time when handling a large number of
points.

Moreover, Jian et al. [7] proposed a robust point set registration approach
using Gaussian mixture models (GMM), they leverage the closed-form expression
for the L2 distance between two Gaussian mixtures which represent the given
point sets. Alternatively, Ma et al. [10] introduced L2-minimizing estimate (L2E)
[17], a robust estimator in statistics, to the nonrigid transformation estimation
problem. Then they proposed a robust point matching method named RPM-
L2E.

In this paper, we are present a novel robust point matching method. Briefly,
the core of our method is using a mixture of asymmetric Gaussians (AG) to
represent the density of the given point set. Then we use L2E [17] to estimate
the transformation parameters.

The rest of this paper organized as follows: A novel robust point matching
method using mixture of asymmetric Gaussians and L2-minimizing estimate for
nonrigid transformation is presented in Section 2. Section 3 shows an optimal
solution of our proposed method. The experiments and performance evaluation of
our proposed method is shown in Section 4. In Section 5, we present a conclusion.

2 Method

2.1 Point Set Representation Using Mixture of Asymmetric
Gaussians

We introduce a new probability model named Asymmetric Gaussian (AG) [8]
which can capture spatially asymmetric distributions. AG is another form ex-
tending from Gaussian. It is shown that Gaussian has a symmetric distribution
while AG has an asymmetric distribution by Fig. 1 where the density functions
are plotted. Thus the distribution of AG is given by:
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where D is the dimension of data, µ , σ2 and r are parameters of AG where
r = 1 means AG equaling to Gaussian.

Since the definition of the density model, it is easy to construct a mixture of
AG which may be well approximate almost any density with a linear combination
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Fig. 1. Density functions of Gaussian and asymmetric Gaussian (AG).

of local AGs. Then the overall density of the J-component mixture is given by:

p (x) =

J∑
j=1

wjA
(
x|µ, σ2, r

)
(2)

where wj is the weight of each component, and {wj}Jj=1 are mixing proportions

satisfying 0 ≤ wj ≤ 1 and
∑J
j=1 wj = 1.

Given two point sets: 1) the Model set XM×D = (x1, ..., xM )
T

which needs to

be moved; 2) the Scene set YN×D = (y1, ..., yN )
T

which is fixed. In this paper,
we represent a discrete point set by a mixture of AGs where the number of AG
components is equivalent to the number of points. Note that all AG components
are weighted equally, and all point sets are normalized as distributions with zero
mean and unit variance.

2.2 The Robust Point Matching Method

In this article, we select L2E [17] to estimate the unknown parameters of the
transformation between two AG mixtures. The estimation error of L2E which
maximizes the sum of the densities is less than the estimation error of maximum
likelihood estimation (MLE) which maximizes the product of the densities. In
nonrigid transformation, the transformation f can be solved by minimizing the
following cost function:
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where f is the transformation model, M ≤ N , and I is an identity matrix of size
D ×D.
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Following the idea of TPS-RPM [4], we use a slightly simpler form to estimate
the transformation without considering outliers:
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where L is the number of correspondences and L ≤ M . yl, which is recovered
from Eq. 3 or other fitting models (e.g., Soft-assignment [4], Shape Context [2]),
denotes the correspondence to xl.

Here we introduce a special space, reproducing kernel Hilbert space (RKHS),
and then finding the functional form of the transformation model f using calculus
of variation. In RKHS, it is given the Model set X ∈ RD, the Scene set Y ∈ RD,
and their correspondence set S = {(x1, y1) , ..., (xL, yL)}. Then we define an
RKHS H with a positive definite kernel function k. In this paper, we use the

Gaussian kernel: k (xi, xj) = exp
(
−β‖xi − xj‖2

)
, where β is a constant. Thus

we can define the kernel matrix K:

K =

 k (x1, x1) . . . k (x1, xL)
...

. . .
...

k (xL, x1) · · · k (xL, xL)

 (5)

The transformation function f ∈H can be found by minimizing the follow-
ing regularized least-squares [1, 16]:

ε (f) = min
f∈H

FAG
(
f, σ2, r

)
+
λ

2
‖f‖2K (6)

where the first term is the empirical risk and the second term is the Tikhonov
regularization [18], λ > 0 is a trade-off parameter, ‖·‖K denotes a norm in the

RKHS. Tikhonov regularization form smoothly trades-off ‖f‖2K and the empiri-
cal risk and solves the ill-posed problem in point matching.

According to the representation theorem [12] and related study in [1, 14], the
solution of Eq. (6) to the Tikhonov regularization can be written in the following
form:

f∗ (·) =

L∑
i=1

hiK (xi, ·) (7)

for some hi ∈ RL.
Substituting Eq. (7) into the cost function (4), we can therefore rewrite it

with the Tikhonov regularization as

FAG
(
H,σ2, r

)
=

2D(
πσ2(r + 1)

2
)D − 2(2+D)/2

L
(
πσ2(r + 1)

2
)D/2

Γ +
λ

2
tr
(
HTKH

)
(8)

where

Γ =

 exp
(
−‖Y−KH‖

2

2σ2

)
if yi ≤ (KH)i

exp
(
−‖Y−KH‖

2

2r2σ2

)
otherwise

(9)



Robust Point Matching using MAG for Nonrigid Transformation 5

and tr (·) denotes the trace, H = (h1, ..., hL)T is an coefficient matrix of size
L×D.

2.3 Low-rank Kernel Matrix Approximation

The matrix-valued kernel [12, 19] plays an important role in the regularization
theory, it provides an easy way to choose an RKHS. However, in this paper, the
computational complexity of our method is O(N3), hopefully, low-rank kernel
matrix approximation [11] can yield a large increase in speed with little loss in

accuracy. Low-rank kernel matrix approximation K̂ is the closest τ -rank matrix
approximation to K and satisfying L2 and Frobenius norms.

Using eigenvalue decomposition of K, the approximation matrix can be
rewritten as:

K̂ = QΛQT (10)

where Λ is a diagonal matrix of size τ × τ with τ largest eigenvalues and Q is
an L× τ matrix with the corresponding eigenvectors. The object function of our
method therefore can be rewritten as:
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and UL×τ = QΛ, parameter matrix Ĥ of size τ×D instead of the original matrix
H.

3 Searching for An Optimal Solution

In this paper, the aforementioned cost function is convex in the neighborhood of
the optimal position and, most importantly, always differentiable. Thus, the nu-
merical optimization problem can be solved by employing some gradient-based
optimization methods, such as quasi-Newton method [15]. The derivative of E-

q. (11) with respect to the coefficient matrix Ĥ is given by:

∂FAG

∂Ĥ
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UĤ

)
i

1
r2V ◦

(
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where V = UĤ−Y , C = exp
(
diag

(
V V T

)/
2σ2
)
, Ĉ = exp

(
diag

(
V V T

)/
2r2σ2

)
and 1 is an 1×D row vector of all ones. ◦ denotes the Hadamard product, ⊗
denotes the tensor product.
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Fig. 2. Experiments on noise. The left figure of each group denotes initial point sets
(the Model set: blue crosses, the Scene set: red circles), and the right figure denotes the
registration result of our method. Note that increasing degrees of degradation from top
to bottom. The rightmost figure (top: fish, bottom: Chinese character) is a performance
comparison of our results (red circle) with the TPS-RPM (black pentagram), GMM-L2

(green star), CPD (blue triangle) and RPM-L2E (magenta square) methods. The error
bars indicate the registration error means and standard deviations over 100 random
trials.

Finally, we use deterministic annealing introduced by [4, 7] which is a useful
heuristic method to escape from the trap of local minima. The initialization
value of σ2, r and Ĥ are 0.05, 9 and 0, respectively, and we set α = 0.95,
β = 0.8, λ = 0.1, and τ = 15 for our method throughout this paper. Note that
the termination condition of iteration is σ2 < 0.005.

4 Experiments

In order to evaluate the performance of our method, we implemented it in Mat-
lab and tested it on a laptop with Pentium CPU 2.4GHz and 4GB RAM. In
this section, we first present the results of point sets qualitatively evaluate our
method. Then we quantitatively evaluate our method via registration error which
is the average Euclidean distance between the Model set and the Scene set, and
compare our results with several comparative methods: TPS-RPM [4], GMM-
L2 [7], CPD [13, 14] and RPM-L2E [10], which are implemented using publicly
available codes.
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Fig. 3. Experiments on deformation. The left figure of each group denotes initial point
sets (the Model set: blue crosses, the Scene set: red circles), and the right figure denotes
the registration result of our method. Note that increasing degrees of degradation from
top to bottom. The rightmost figure (top: fish, bottom: Chinese character) is a perfor-
mance comparison of our results (red circle) with the TPS-RPM (black pentagram),
GMM-L2 (green star), CPD (blue triangle) and RPM-L2E (magenta square) methods.
The error bars indicate the registration error means and standard deviations over 100
random trials.

4.1 Synthetic Data

We have tested our method on the same data as in [4, 21, 10] named Chui-
Rangarajan synthesized data sets. We chose four sets of the aforementioned data
and designed them to evaluate the robustness of a method under 4 degradations:
noise, deformation, occlusion and outliers. Fish and Chinese character shapes
of data are used for point set registration, and there are 100 samples in each
degradation level.

Noise: The noise, due to the processes of image acquisition and feature extrac-
tion are not accurate completely, arising from these processes and leading to the
resulting feature points cannot be exactly matched [4]. The second and fourth
columns of Fig. 2 show results of two shapes under the noise where its level from
0.01 to 0.05. Observing that when the noise level is large, two point sets are not
aligned together perfectly. The rightmost column of Fig. 2 denotes the registra-
tion error of ours and the comparative methods on two shapes respectively. The
registration results show that errors are becoming larger gradually as increasing
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Fig. 4. Experiments on occlusion. The left figure of each group denotes initial point sets
(the Model set: blue crosses, the Scene set: red circles), and the right figure denotes the
registration result of our method. Note that increasing degrees of degradation from top
to bottom. The rightmost figure (top: fish, bottom: Chinese character) is a performance
comparison of our results (red circle) with the TPS-RPM (black pentagram), GMM-L2

(green star), CPD (blue triangle) and RPM-L2E (magenta square) methods. The error
bars indicate the registration error means and standard deviations over 100 random
trials.

the noise level. Our method and the other four methods have nearly means of
registration errors, but our method is slightly more robust than the others by
comparing their standard deviations.

Deformation: Nonrigid transformation is quite difficult than rigid. In our
method, we use the Gaussian radial basis function (GRBF) to model the trans-
formation. Observing that the registration results of our method are quite well,
as shown in the top three rows of Fig. 3, but the fourth and fifth rows show some
points drifted because of the large degree of deformation of the given Model set.
Comparing our results with the other methods, as shown in the rightmost colum-
n of Fig. 3, means of errors of our method are less than TPS-RPM’s, GMM-L2’s
and CPD’s clearly. When the degree of deformation is large, such as 0.065 and
0.08, our method outperforms RPM-L2E.

Occlusion: Occlusion a.k.a., missing points, some point features have no cor-
responding points in the other point set. In this paper, we follow the idea of
TPS-RPM that the missing points are treated as outliers, where the outliers
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Fig. 5. Experiments on outliers. The left figure of each group denotes initial point sets
(the Model set: blue crosses, the Scene set: red circles), and the right figure denotes the
registration result of our method. Note that increasing degrees of degradation from top
to bottom. The rightmost figure (top: fish, bottom: Chinese character) is a performance
comparison of our results (red circle) with the TPS-RPM (black pentagram), GMM-L2

(green star), CPD (blue triangle) and RPM-L2E (magenta square) methods. The error
bars indicate the registration error means and standard deviations over 100 random
trials.

satisfy the normal distribution. Observing that input Model point set not only
contains missing points, but also is deformed in several degrees, as shown in the
first and third columns of Fig. 4. Results on the fish data, as shown in the second
column of Fig. 4, show that almost extra points are aligned correctly. But on
the Chinese character data, as shown in the fourth column of Fig. 4, the results
are not aligned very well, because points on the Chinese character shape are not
clustered. The rightmost column of Fig. 4 shows the comparison of our results
with the comparative methods. The difference between our method and other
methods becomes larger as increasing the occlusion ratio. Most importantly, the
errors of our method increase much slower than the others.

Outliers: The existence of outliers means many points in one point set that have
no corresponding points (homologies) in the other and affects matching results
significantly [4]. In this paper, five outlier to data ratios are used: 0, 0.5, 1.0, 1.5,
2.0, and the corresponding results are shown in the second and fourth columns
of Fig. 5 respectively. Excitingly, correspondence points are aligned perfectly
using our method even in the largest outlier ratio. The comparison of our results
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Fig. 6. Experiments on 2D real images. The third figure of each group denotes initial
point sets (the Model set: blue crosses, the Scene set: red circles), and the last figure
denotes the registration result of our method. The rightmost figure is a performance
comparison of our results with GMM-L2, CPD and RPM-L2E methods. The height of
each bar indicates the registration error means over 20 random trials.

with other methods, as shown in the rightmost column of Fig. 5, shows that our
method outperforms GMM-L2, CPD and RPM-L2E significantly and is more
robust than TPS-RPM.

4.2 Real Image Data

In this experiment, we select 7 image pairs from the Oxford affine covariant re-
gions data set 1, as shown in the foremost two rows in Fig. 6. There are five
different imaging conditions: image blur (bikes and trees), scale changes (boat),
multi-viewpoint (graf and wall), JPEG compression (ubc), and illumination (leu-
ven). We extract the SIFT [9] features of those image pairs, and construct initial
correspondences using BBF (Best Bin First) method [9], the sparse initialization
point sets as shown in the third row of Fig. 6. Note that the point sets do not
satisfy arbitrary shapes. The TPS-RPM failed to match and register any point
sets, so we did not draw its result in the rightmost figure of Fig. 6.

We repeated the process 20 times, and obtained standard deviations of the
methods. GMM-L2 and CPD are stable without deviations. The standard devi-
ations of RPM-L2E are 0.21, 0.39, 0.34, 0.03, 0.05, 0.04, 0.02, from left (bikes)
to right (wall). However, the standard deviations of our method are almost ze-
ros except the image pairs of graf (std: 0.52). The comparison of our results
with other methods shows that our method outperforms GMM-L2, CPD and
RPM-L2E significantly in most cases.

5 Conclusion

In this paper, we focus on the case of degradations in point matching problem.
Under the previous work of literatures [3–7, 10, 14, 21], we introduce a novel ro-
bust method for point matching. There are many registration methods based

1 http://www.robots.ox.ac.uk/ṽgg/data/
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the Gaussian model, while the asymmetric Gaussian model experimented more
accurate than the former in this paper, such as comparing the proposed method
with GMM-L2 and RPM-L2E which use Gaussian. Moreover, as pointed out in
[8], asymmetric Gaussian can capture more accurate spatially asymmetric dis-
tributions than Gaussian. In addition, we choose L2E [17], a robust estimator
between two densities, to estimate the similarity between two input point set-
s. We use low-rank kernel matrix approximation to speed up our method. Note
that our method is different with graph matching method [22], because the focus
of our method is on the estimation robustness to noise, deformation, occlusion
and outliers, while the latter one is mainly used to recover the correspondences
accurately. Experimental results on synthetic and real image data illustrate that
our proposed method outperforms the comparative methods. Future work in-
cludes validating our method on large number of data sets and applying it to
many applications, e.g., image retrieval, and 3D image registration.
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